Home Search Collections Journals About Contact us My IOPscience

Magnetic properties of $Sm_2Fe_{17-x}Ga_xC_2$ compounds

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1995 J. Phys.: Condens. Matter 7 883 (http://iopscience.iop.org/0953-8984/7/5/010)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.179 The article was downloaded on 13/05/2010 at 11:50

Please note that terms and conditions apply.

Magnetic properties of Sm₂Fe_{17-x}Ga_xC₂ compounds

Bao-gen Shen, Fang-wei Wang, Hua-yang Gong, Zhao-hua Cheng, Bing Liang, Jun-xian Zhang and Shao-ying Zhang

State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100080, People's Republic of China

Received 8 July 1994, in final form 1 November 1994

Abstract. The Sm₂Fe_{17-x}Ga_xC₂ (x = 0, 2, 3, 4, 5 and 6) samples were prepared by arc melting. X-ray diffraction shows that these alloys are single-phase compounds of the rhombohedral Th₂Zn₁₇-type structure except for the sample with x = 0, which exhibits a multiphase structure with a predominant α -Fe phase. The lattice constants a and c and the unit-cell volumes v of Sm₂Fe_{17-x}Ga_xC₂ compounds with $x \ge 2$ increase monotonically with increasing Ga concentration. The Curie temperature T_C and room-temperature saturation magnetization M_s are found to decrease monotonically with increasing Ga concentration x from 635 to 338 K and from 102.3 to 29.0 emu g⁻¹ respectively, as x increases from 2 to 6. The Sm₂Fe_{17-x}Ga_xC₂ compounds exhibit an easy *c*-axis anisotropy. The room-temperature anisotropy field is 135 kOe for x = 2, which is about 55 kOe higher than that of Nd₂Fe₁₄B, and it decreases to 60 kOe at x = 4.

1. Introduction

The rare-earth (R) iron-rich R_2Fe_{17} intermetallic compounds are not suitable for permanent magnets because of their low Curie temperatures and room-temperature plane magnetic anisotropies. In order to increase the Curie temperatures of R₂Fe₁₇ compounds and to modify their anisotropies, a number of investigations have been done. Introducing interstitial atoms into R_2Fe_{17} compounds by the gas-solid reaction [1-3] and melt-spinning [4] methods leads to a considerable enhancement of the Curie temperature. The $Sm_2Fe_{17}N_y$ and $Sm_2Fe_{17}C_y$ compounds show uniaxial anisotropy with an anisotropy of 140 kOe for nitride [5] and 150 ± 5 kOe for carbide with y = 2.5 [3] at room temperature. It is unfortunate that the nitrides and carbides prepared by gas-solid reaction have a poor high-temperature stability. In our previous work [6–8], it was found that the high-carbon $R_2Fe_{17}C_x$ compounds by the substitution of Ga, Al or Si exhibit a high thermal stability, in contrast with the carbides produced by the gas-solid reaction. We have studied [6-9] the formation, structure and magnetic properties of the arc-melted compounds of R_2 (Fe, M)₁₇C_x (R \equiv Y, Nd, Sm, Gd, Tb, Dy, Ho, Er or Tm; M = Ga, Al or Si; $x \leq 3.0$ with the rhombohedral Th₂Zn₁₇type or hexagonal Th₂Ni₁₇-type structures and found that the arc-melted Sm₂(Fe, M)₁₇C_x compounds with $x \ge 1.5$ and relatively lower M concentration have a Curie temperature of higher than 600 K and a room-temperature anisotropy field of higher than 90 kOe. A high coercivity of 15 kOe at room temperature was obtained for the Sm₂(Fe, Ga)₁₇C_x compounds by melt spinning [6, 10]. The important effect on the magnetic properties of R_2Fe_{17} compounds results not only from the addition of interstitial carbon atoms but also from the substitution of Ga, Al, Si, Co, Ni, etc, for Fe [11-16]. The substitution of Ga in Sm_2Fe_{17} can cause a room-temperature uniaxial anisotropy to develop without

introducing interstitial carbon or nitrogen atoms [15, 16]. In our previous papers, the effect of the interstitial carbon atoms on the structure and magnetic properties of $\text{Sm}_2(\text{Fe}, \text{Ga})_{17}C_x$ compounds was presented [6, 7]. Here, we report the influence of the substitution of Ga for Fe on the structure and magnetic properties of $\text{Sm}_2\text{Fe}_{17}C_2$.

Figure 1. X-ray diffraction patterns of arc-melted $Sm_2Fe_{17-x}Ga_xC_2$ annealed at 1450 K for 48 h with x = 0, for 96 h with x = 2, and for 12 h with x = 4 and 6 (a.u., arbitrary units).

2. Experimental details

The $Sm_2Fe_{1-x}Ga_xC_2$ alloys with x = 0, 2, 3, 4, 5 and 6 were prepared by arc melting in an argon atmosphere of high purity. The raw materials of Sm, Fe, Ga and Fe–C alloy were at least 99.9% pure. The ingots were melted at least four times to ensure homogeneity. An

Compound	a (Å)	с (Å)	υ (Å ³)	Т _С (К)	$M_{\rm s} (1.5 \text{ K})$ (emu g ⁻¹)	M _s (300 K) (emu g ⁻¹)	H _A (1.5 K) (kOe)	H _A (300 K) (kOe)
Sm ₂ Fe ₁₅ Ga ₂ C ₂	8.724	12.586	829.4	635	114.2	102.3	> 250	135
Sm ₂ Fe ₁₄ Ga ₄ C ₂	8.747	12.621	836.2	629	99.2	88.7	> 250	93
Sm ₂ Fe ₁₃ Ga ₄ C ₂	8.754	12.654	839.8	539	86.7	73.1	> 250	60
Sm ₂ Fe ₁₂ Ga ₅ C ₂	8.778	12.674	845.7	432	71.0	52.9		
$Sm_2Fe_{11}Ga_6C_2$	8.798	12.721	852.7	338	57.9	29.0		

Table 1. Structure and magnetic parameters of Sm₂Fe_{17-x}Ga_xC₂ compounds.

Figure 2. Curie temperature T_C for $Sm_2Fe_{17-x}Ga_x$ [6] and $Sm_2Fe_{17-x}Ga_xC_2$ as a function of Ga concentration.

Figure 3. X-ray diffraction patterns of magnetically aligned $\text{Sm}_2\text{Fe}_{17-x}\text{Ga}_x\text{C}_2$ powder samples with x = 2 and 4 (a.u., arbitrary units).

excess of 4.5% Sm was added to compensate for the evaporation of Sm during melting. The heat treatment of the arc-melted ingots was performed in a steel tube in a highly purified argon atmosphere at 1450 K for 12–96 h. X-ray diffraction measurements on powder samples were performed using Co K α radiation to identify the single phase and to determine the crystallographic structure. The room-temperature saturation magnetization was measured with an extracting-sample magnetometer in a field of 65 kOe. The Curie temperatures were determined from the temperature dependence of magnetization measured with a vibrating-sample magnetometer and a magnetic balance in a magnetic field of 1 kOe. The aligned samples for anisotropy field measurements were prepared by mixing the powder

Figure 4. The magnetization curves of the oriented $Sm_2Fe_{17-x}Ga_xC_2$ (x = 2, 3 and 4) samples measured along and perpendicular to the aligned directions at (a) 1.5 K and (b) room temperature.

with epoxy resin and then aligning in a magnetic field of 10 kOe. The anisotropy field was determined from magnetization curves measured along and perpendicular to the orientation direction by using the extracting-sample magnetometer with a magnetic field of up to 65 kOe at 1.5 K and room temperature.

3. Results and discussion

The x-ray diffraction patterns of $\text{Sm}_2\text{Fe}_{17-x}\text{Ga}_x\text{C}_2$ with x = 0, 2, 4 and 6 are shown in figure 1. It is difficult to obtain a single-phase $\text{Sm}_2\text{Fe}_{17-x}\text{Ga}_x\text{C}_2$ compound with x < 2 by arc melting. X-ray diffraction, as shown in figure 1, of $\text{Sm}_2\text{Fe}_{17}\text{C}_2$ shows a multiphase structure with a predominant α -Fe phase. For x = 2, the sample consists of the 2:17 phase and α -Fe phase; however, high-temperature annealing leads to the formation of the 2:17-type single phase. Our study shows that the arc-melted $\text{Sm}_2\text{Fe}_{17-x}\text{Ga}_x\text{C}_2$ alloys with $x \ge 3$ are single phase with the rhombohedral $\text{Th}_2\text{Zn}_{17}$ -type structure. No significant diffraction from the impurity phase is observed. The partial substitution of Ga for Fe helps the formation of the high-carbon rare-earth iron compounds with 2:17-type structure, as shown in our previous work [6, 7, 9].

Table 1 summarizes the lattice constants a and c and the unit-cell volumes v obtained from the x-ray diffraction patterns of $Sm_2Fe_{17-x}Ga_xC_2$ compounds with $2 \le x \le 6$ as a function of Ga concentration. The substitution of Ga for Fe was found to increase the unit-cell volumes. An approximately linear dependence of the unit-cell volume on Ga concentration is observed. For $Sm_2Fe_{17-x}Ga_xC_2$, the unit-cell volume expansion is about 2% compared with those of $Sm_2Fe_{17-x}Ga_x$ compounds with the same Ga concentration [15]. The increase in cell volume per Ga atom is found to be about 5.4 Å³.

The saturation magnetization M_s and Curie temperature T_C for $Sm_2Fe_{17-x}Ga_xC_2$ compounds are also listed in table 1. The saturation magnetization at 1.5 K was found to decrease with increasing x from 114.2 emu g⁻¹ for x = 2 to 57.9 emu g⁻¹ for x = 6. The room-temperature saturation magnetization is in excess of 100 emu g⁻¹ for x = 2 and it decreases monotonically with increasing Ga content to 29.0 emu g⁻¹ at x = 6. T_C for $\text{Sm}_2\text{Fe}_{17-x}\text{Ga}_x\text{C}_2$ with $x \leq 3$ is found to be about 630 K, which is about 240 K higher than that of Sm_2Fe_{17} and about 130 K higher than that of $Sm_2Fe_{17}C$ [12]. However, a higher Ga concentration (x > 3) decreases T_c. Figure 2 shows the Curie temperatures T_c of $Sm_2Fe_{17-x}Ga_x$ [15] and $Sm_2Fe_{17-x}Ga_xC_2$ compounds as a function of Ga concentration, for comparison. It is shown that, when the Ga concentration x is lower than 3, the introduction of interstitial carbon atoms or the substitutional Ga atoms in Sm₂Fe₁₇ leads to a strong increase in Curie temperature. The enhancement of $T_{\rm C}$ is mainly due to the lattice expansion. However, a decrease in Curie temperature with increasing x in the Gasubstituted compounds with x > 3 is observed, although the further substitution of Ga results in a monotonic increase in the unit-cell volume. In general, in the Fe-rich rare-earth-iron compounds the Curie temperature is mainly determined by the Fe-Fe exchange interactions, which is strongly dependent on the interatomic distance. The larger substitution of larger Ga for Fe, when x > 3, would decrease the Fe–Fe exchange interactions owing to the further increase in Fe-Fe distance and the decrease in the number of Fe-Fe atom pairs, resulting in a drop in $T_{\rm C}$.

The Sm₂Fe_{17-x}Ga_xC₂ samples with $x \leq 6$ are found to have a strong easy c-axis anisotropy at room temperature. This can be clearly seen from the x-ray diffraction patterns of magnetically aligned powder samples, as is shown in figure 3, for $Sm_2Fe_{17-x}Ga_xC_2$ with x = 2 and 4. The strong enhancement in the (0, 0, 6) reflection and the absence of (h, k, 0) indicates that the c axis is the easy direction of magnetization. The strong uniaxial magnetocrystalline anisotropy of the Sm sublattice in the $Sm_2Fe_{17-x}Ga_xC_2$ can result from the effect of both Ga and C additions. It has been shown previously that the substitution of Ga for Fe in Sm_2Fe_{17} leads to a change in magnetocrystalline anisotropy from the basal plane to the c axis at room temperature [15, 16]. The addition of carbon atoms causes a large negative crystal-field parameter A_{20} [17] and, in consequence, increases the anisotropy of the Sm sublattice. Figure 4 shows the magnetization curves of $\text{Sm}_2\text{Fe}_{17-x}\text{Ga}_x\text{C}_2$ (x = 2, 3 and 4) compounds measured along and perpendicular to the aligned directions at 1.5 K and room temperature. The magnetocrystalline anisotropy field HA estimated from magnetization curves is listed in table 1. H_A is found to be in excess of 250 kOe at 1.5 K. The roomtemperature anisotropy field of the sample with x = 2 is 135 kOe, which is 55 kOe higher than that of Nd₂Fe₁₄B. The further substitution of non-magnetic Ga (x > 2) decreases H_A .

Acknowledgments

This work was supported by the State's Sciences and Technology Commission, the Chinese Academy of Sciences, and The National Natural Science Foundation of China.

References

- [1] Coey J M D and Sun H 1990 J. Magn. Magn. Mater. 87 L251
- [2] Coey J M D, Sun H, Otani Y and Hurley D P F 1991 J. Magn. Magn. Mater. 98 76
- [3] Liao L X, Chen X, Altounian Z and Ryan D H 1992 Appl. Phys. Lett. 60 129
- [4] Cao L, Kong L S and Shen B G 1992 J. Phys.: Condens. Matter 4 L515
- [5] Katter M, Wecker J, Schultz L and Grossinger R 1990 J. Magn. Magn. Mater. 92 L14
- [6] Shen B G, Kong L S, Wang F W and Cao L 1993 Appl. Phys. Lett. 63 2288
- [7] Shen B G, Wang F W, Kong L S, Cao L and Zhan W S 1994 J. Appl. Phys. 75 6253
- [8] Cheng Z H, Shen B G, Wang F W, Zhang J X, Gong H Y and Zhao J G 1994 J. Phys.: Condens. Matter 6 L185
- [9] Shen B G, Wang F W, Kong L S, Cao L and Guo H Q 1993 J. Magn. Magn. Mater. 127 1267
- [10] Kong L S, Shen B G, Wang F W, Cao L, Guo H Q and Ning T S 1994 J. Appl. Phys. 75 6250
- [11] Alp E E, Umarji A M, Malik S K, Snenoy G K, Huang M Q, Boltich E B and Wallace W E 1987 J. Magn. Magn. Mater. 68 305
- [12] Weitzer F, Hiebl K and Rogl P 1990 IEEE Trans. Magn. MAG-26 2661
- [13] Hu B P, Rao X L, Xu J M, Liu G C, Dong X L, Li H, Yin L and Zhao Z R 1992 J. Magn. Magn. Mater. 114 138
- [14] Jacobs T H, Buschow K H J, Zhou G F, Li X and de Boer F R 1992 J. Magn. Magn. Mater. 116 220
- [15] Shen B G, Wang F W, Kong L S and Cao L 1993 J. Phys.: Condens. Matter 5 L685
- [16] Wang Z and Dunlap R A 1994 Phil. Mag. B 69 103
- [17] Jacobs T H, Dirken M W, Thiel R C, de Jongh L J and Buschow K H J 1990 J. Magn. Magn. Mater. 83 293